LOCKSS: Distributed Web Preservation Architecture

David S. H. Rosenthal
Vicky Reich

LOCKSS Program
Stanford University Libraries
http://www.lockss.org/
© 2007 David S. H. Rosenthal & Victoria Reich

LOTS OF COPIES KEEP STUFF SAFE
Preserving Society's Knowledge

Larry Niven and Jerry Pournelle

The Mote in God's Eye

Possibly the finest science fiction novel I have ever read
Robert A. Heinlein

Lots of copies keep stuff safe
Libraries: Robust Record

- Massively replicated, highly distributed
 - Collection policies mean more important more replicas

- Durable, write-once, tamper-evident media
 - Convincing fake printed books are hard & expensive

- Loosely coupled, independently administered
 - Failure of one library unlikely to affect others

- Failed slowly and gradually
 - Market in replicas = early warning of shortage
Libraries: Web Threat

- Web threatens library's role as memory
 - Many libraries used to own a copy, keep it in the stacks
 - Now they lease access to publisher's single copy
LOCKSS: Goals

• Restore libraries role as memory
 – Provide tools to collect & preserve Web content

• Revert to purchase model for content
 – Libraries continue to own copies of copyright content

• DMCA means need copyright permission
 – System must compromise between library & publisher

• What do publishers need to give permission?
 – Don't leak content, steal hits on content, re-brand content

• What do libraries need to build collections?
 – Local control of local copies of web content
 – Low cost-of-ownership collection & preservation
Practicalities

- **Goal**: minimal per-replica not per-byte cost
 - Don't ask “how few replicas do we need to be safe?”
 - Ask “how can many replicas reduce per-replica cost?”

- **Goal**: minimal barrier to entry
 - Librarians are risk-averse & impoverished
 - Enable learn-by-doing with cast-off hardware

- **Media only a small part of storage cost**
 - .36 media, .23 admin, .15 capital, .15 maint, .11 facility

- **Storage only small part of preservation cost**
 - 1hr of lawyer > 1TB of disk
Minimize Per-Replica Cost

- **Hardware**: consumer disks + generic PCs
 - Most library collections of published content not huge
 - E.g. all academic journals = 30-40TB

- **Software**: free, open-source
 - Re-use existing code as much as possible

- **Sysadmin**: de-skill via automation
 - Be fanatical about security of LOCKSS system
 - Package as network appliance – LOCKSS box
 - No backups – use replicas at other libraries

- **User education**: transparent content access
 - No need to educate users

LOTS OF COPIES KEEP STUFF SAFE
What Are 100s Of Replicas Good For?

- Many, not very reliable replicas are a given
 - Can they cooperate to increase reliability?
 - Without leaking content to non-subscribers?
- LOCKSS boxes continually audit each other
 - By voting in polls on the hashes of content items
 - Agree with majority? Content OK.
 - Disagree with majority? Request repair from majority
- Remember history of agreement with boxes
 - Give repair only if agreement in previous polls
 - Repair isn't a leak; it can only replace pre-existing copy
Threat Model

- Media failure
- Hardware failure
- Software failure
- Network failure
- Obsolescence
- Natural Disaster
Threat Model

- Media failure
- Hardware failure
- Software failure
- Network failure
- Obsolescence
- Natural Disaster
- Operator error
- External Attack
- Insider Attack
- Economic Failure
- Organization Failure
Example: Disks

- Manufacturers specifications:
 - 10^6 hours MTTF
 - 10^{-14} unrecoverable bit error rate

- Schroeder & Pinheiro FAST '07 papers:
 - Field replacement rate 2-20 time MTTF
 - No "bathtub curve" of early failures
 - Enterprise disks 10x expensive, no more reliable
 - No correlation between temperature & failure
 - Significant autocorrelation – very bad for RAID
 - Significant long-range correlation
 - SMART data logging not useful for failure prediction
Example: Software

File system code is carefully written & tested:

- Iron File System (Prabhakaran 2005):
 - Fault injection using pseudo-driver below file system
 - Bugs and inconsistencies in ext3, JFS, ReiserFS, NTFS

- FiSC (Yang 2006):
 - Model checking of file system code
 - 33 severe bugs in ext3, JFS, ReiserFS, XFS
 - Could destroy / in each file system

- Take away message:
 - The more you look, the more you find
Example: Insider Attack

- E.g. alienated system administrator
 - Major cause of system compromise (Keeney 2005)
 - Despite being massively under-reported

- E.g. piper calling the tune
 - Suppression or rewriting by government or funder
 - Hansen testimony to Waxman committee

- Paper record was fairly tamper-evident
 - How do we make electronic record tamper-evident?
LOCKSS Overview

• Each library runs a “persistent web cache”
 – Cache is never flushed
 – Caches cooperate to detect and repair damage

• Preloaded by a crawler with selected content
 – Crawler must be very slow and careful
 – Natural overlap of library collections = replication

• Readers use LOCKSS box like cache
 – Box forwards request to publisher + IfModifedSince
 – OK, no reply, error = return preserved content
 – Otherwise return publisher content
Audit & Repair via Polls

• Poller box decides content needs auditing
 – Chooses timeframe, sample of boxes with content
 – Sends invitations to potential voter boxes

• If voter box schedules hashes in timeframe
 – Accepts invitation, waits for nonce from poller
 – Choose voter nonce, hashes nonces + content
 – Sends vote to poller, waits for receipt

• Poller hashes nonces + content, tallies votes
 – If disagree with majority, request repairs
 – Send receipts to voters
 Formats

• LOCKSS is format agnostic
 – Collect and preserve any format delivered via HTTP
 – Content must be quasi-static
 • I.e. all viewers see the same important parts
 • Ads, etc. filtered by plugin before hashing

• LOCKSS supports format migration
 – Preserves only the original bits from the publisher
 – HTTP format negotiation to identify obsolete format
 – Trigger format converter to get temporary access copy
 – Deliver to browser with appropriate mime-type
 • I.e. not the obsolete one it was collected with
Deployment

• Went live 2004, 50 libraries.
• Now about 200 libraries worldwide
 – 6-weekly daemon releases, 6-monthly platform releases
• Now about 200 publishers worldwide
 – Weekly content releases of 100s of volumes
• Most publishers OK to ingest back content
 – Startup transient load >> sustained load
• System is low-maintenance, transparent
 – Easy to support, but easy to take for granted
Other Genres Of Content

• Open-Access
 – Specially important in the humanities
 – Eg: World Haiku Review rescued from LOCKSS

• Federal & State Documents
 – Eg: Secrecy News & its FOIA'ed documents

• Special Collections
 – Eg: MetaArchive of Southern Culture (NDIIPP project)

• Blogs – basic Blogger plugin just released
 – Eg: blog.dshr.org
Measuring Performance

- Long-term storage is a big market
 - Without a performance benchmark!
 - Benchmarks drive mature tech markets

- My suggested benchmark: bit half-life
 - Look at a bit in a storage system
 - How long until 50% chance it has flipped?

- Technology cost/performance axes
 - Cost: $/bit/yr
 - Performance: bit half-life
Petabyte for a Century

- Suppose need to keep petabyte for century
 - With 50% chance of every bit surviving undamaged
 - Now that's big, in 100 years its 10^{-9} of a hard drive

- 0.8 exabit-year with 50% survival unimpaired
 - Consider possibility of bit rot affecting the system
 - Radioactivity analogy, small probability of bit flip
 - Bit half-life 0.8×10^{18} yr = ~100M times age of universe

- Can we test that systems are this reliable?
 - Watch exabyte for year, see ~5 bit flips? Not feasible.
 - Requirement is ~10,000 times our ability to test
 - CERN tests see ~10,000 times higher bit flip rate
Credits

• LOCKSS Engineering Team (since 1998)
 - Tom Lipkis, Tom Robertson, Seth Morabito, Thib G-C.

• LOCKSS Research Team (since 2001)
 - Best Paper @ SOSP2003
 - Mary Baker, Mehul Shah & colleagues @ HP Labs
 - Mema Roussopoulos & students @ Harvard CS
 - Petros Maniatis & interns @ Intel Research Berkeley

• Funding from
 - libraries, Sun, NSF, Mellon, LoC, publishers, ...